If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+72x-4756=0
a = 8; b = 72; c = -4756;
Δ = b2-4ac
Δ = 722-4·8·(-4756)
Δ = 157376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{157376}=\sqrt{64*2459}=\sqrt{64}*\sqrt{2459}=8\sqrt{2459}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-8\sqrt{2459}}{2*8}=\frac{-72-8\sqrt{2459}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+8\sqrt{2459}}{2*8}=\frac{-72+8\sqrt{2459}}{16} $
| 1/4x=4+1 | | 3x(8x+7)=2x(4+2x) | | 9(x-5)=20 | | 3b+4+8b=15 | | A=a*(150-2*a) | | 3x-11=5^2 | | x^2-2x+0-3=0 | | 5x-2=3x=7 | | -13/64=13/8x-3/2x | | 2(2x-20)=-80 | | 6d=-3d+9 | | 4+x+x=90 | | -10(2x+20)=80 | | 8x(2x)=20 | | 8x2x=20 | | 30+x=-2(8x+2) | | 5y+10=20y+1 | | 2y+10=5y+20 | | -2k3+k2-9=5k3-3k+7 | | 6x^2+35x-8=0 | | 8x+10x=2x-5 | | 2x+10=x+11 | | 11y=7y+24 | | 4x+7+3.2=3x+9 | | 10-11=x-2x | | r=10+8= | | 5a+9=54 | | (w+7)=12 | | 30=3w+2w | | 116x^2/100=0 | | 110x*x+30*x/2+80*0,25x=26100 | | 20+x+96x/100=0 |